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Journal of Physics A 
General Physics 

Letters to the 
Editor 

Plural electron scattering and the inclusion of 
phase factors 

Abstract. A method is given for the calculation of the angular distributions 
of plurally scattered electrons for the case where the scattered wave is a complex 
quantity. An expression is given for the resultant scattered wave; the modulus 
of this quantity is then available for comparison with experiment. 

The  scattered electron wave &(e) is in general a complex quantity 
fl(8) exp(iq,(e)} (e.g. Schomaker and Glauber 1952, Ibers and Hoerni 1954), where 
fl(8) and ql(6) are the amplitude and phase of the scattered electron; 8 is a vector 
representing the polar (6) and azimuthal (4) angles of scattering. In  most electron 
scattering experiments fl( e) and ql( 8) exhibit cylindrical symmetry. Under single 
scattering conditions (or in the kinematical approximation) the measured intensity 
distribution is proportional to I$,(e)l2 and the phase factor rl(e) is not directly 
relevant to the experimental results. However, for plural electron scattering of 
medium energy electrons (5-100 keV) in thin films (100-1000 a), these phase terms 
must be included in the calculations of angular distributions. In  the first Born 
approximation for electron scattering by an atom, rl(e) is approximated to zero and 
the angular redistribution due to plural electron scattering may be calculated by a 
two-dimensional folding of flB(6) or flB(e)2 (Misell and Burge 1969). Schomaker 
and Glauber (1952) point out that, for the lower incident electron energies or with 
specimens containing atoms of high atomic number, the first Born approximation 
fails andflB(8) must be replaced by a complex scattering factor. These atomic phase 
shifts have been computed for a number of elements by the partial wave method and 
are tabulated by, for example, Ibers and Hoerni (1954), Karle and Bonham (1964), 
Kimura et al. (1967), Cox and Bonham (1967), and Haase (1968). 

It is the purpose of this note to outline a method for the calculation of the complex 
scattering factor, and hence the scattered intensity, including the effects of plural 
electron scattering. It is assumed that the single scattering amplitude and phase 
factors are given, i.e. fl( 0) and ql( e) are known. 

For n scattering events in the specimen film, the scattered wave is given by 

f?m exP{irn(e>) = 1 f n - 1 ( 8 ’ >  e x P h d e ’ ) ) f l ( e -  0’) x exp{ir1(8 - e‘)> de’  (1) 
e’ 

where d e  is the element of solid angle dQ -N sin0 d0 d+. 
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If the incident electron wave is of unit intensity (or unit amplitude) then the re- 
sultant scattered wave +,(e), for a specimen of thickness t ,  is given by 

Hence +s( e) is normalized such that 

h is the mean free path for electron scattering into all angles and is related to the 
cross section a by X = A/(N,pa) in the free-atom theory. I t  has been assumed that 
the scattering processes obey Poisson statistics (see, e.g. Misell and Burge 1969). 

Further 

a = I f =  1 Ifi(~>12 d e  

se Ifn(e>12 d e  = (If)”. 

e 
and 

I n  order to calculate the fn( e) exp{ivn( e)}, equation (1) is separated out into real 
and imaginary parts, i.e. 

f n ( 0 )  cos{?l“(e>) = 1 f n -  de’> COS{?ln-l(~’))fi(~ - 0’) COS{rll(~ - 6’)) de‘  

. f n ( e )  s i n h ( f 9 )  = 1 ”fn-1(0’) sin{rln-l(e’))flP- 0’) C O S ( 7 ] 1 ( ~ -  e’)> de’  

et 

- Ie, fn-1(8’>sin(?,-i(B’)}fi(9-8’) Sin{?li(e-e’)) de’  (3) 

and 

8’ 

+ I,, fn -de ‘ )  cOs~?l,-l(e’>)fi(e - 6’) sin{rl1(8 - e’)) de’. (4) 

From these equations it is seen that the scattered intensity l+s(6)lz is dependent on 
the phase factor ql( e). Using the technique of projected scattering functions, pre- 
viously given by Misell and Burge (1969) for the evaluation of angular folding integrals 
(in the first Born approximation), we define the projected scattering functions g,( a) 
and hn(a) by: 

t m  

gli(.> = fn((a2 +P2>li2> cos rln{(a2 + P Z ) l i 2 }  dP ( 5 )  

hn(a) = f n { (a2  +j92)1i2) sin q,{(a2 +/32)1/2} d/3 (6)  

- m  

+ a  

- m  

in the small-angle approximation (i.e. sin 6 N 6) and assuming that jn( 0) falls rapidly 
to zero for large arguments, so that finite limits for the integrations may be replaced 
by infinite limits. 
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The substitution of relations (5) and (6) into equations (3) and (4) respectively 
gives the following one-dimensional integrals : 

+ m  

g,(.> = 1 (g,-l(a’)gl(a-a’)-h,- ,(a’)hl(a-a’)} da’ (7 )  

h,(a) = 1 {g,-l(a’)hl(a-a’)+h,-,(a’)g,(a-a’)}da’ (8) 

- m  
and 

+ m  

-m 

with g,( a) = g,( - a) and h,( a) = h,( - a) for cylindrically symmetric functions. 
The evaluation of integrals of the type (7) and (8) has been given by Misell and 
Burge (1969). 

The actual scattering factors are given by 

where g,’( a) = dg,/da. A similar equation to (9) may be written for f,(e) sin(y,(e)} 
and h,( a). 

Hence the summation (2) may be evaluated and lq5,(e)12 computed for a direct 
comparison with the experimentally determined scattering profiles. Although the 
specific problem considered here is the evaluation of angular folding integrals in the 
free-atom formulation (readily available from the literature) the analysis applies to 
electron scattering by amorphous specimens. The extension of this work to a con- 
sideration of diffraction effects is in progress. 
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Correlation functions for classical systems in the 
van der Waals limit 

Abstract. A v-dimensional system of particles with two-body potential 
q(r) + yvK(yr) is considered. Various correlation functions are defined and 
evaluated in the limit y-+ 0. Some of the results describe two-phase states, 
and others are closely related to the Ornstein-Zernike theory. 


